Math 2J Lecture 9 - 10/I7/I2
 William Holmes

Recap

- The determinant is a function that assigns a number to a square matrix "A" so that

$$
\begin{aligned}
& \operatorname{det}(A)=0 \Leftrightarrow A \text { is singular } \\
& \operatorname{det}(A) \neq 0 \Leftrightarrow A \text { is non-singular }
\end{aligned}
$$

Computing a Determinant

- Can be computed by 'method of diagonals' for 2×2 and 3×3.
- For larger matrices, expansion by minors is necessary.

Properties

$$
\begin{aligned}
\operatorname{det}(A \cdot B) & =\operatorname{det}(A) \cdot \operatorname{det}(B) \\
\operatorname{det}\left(A^{T}\right) & =\operatorname{det}(A)
\end{aligned}
$$

- You must take care though.

$$
\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)
$$

One more property

- If ' A ' is invertible, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$
- Proof

$$
\begin{gathered}
A^{-1} \cdot A=\mathbb{I} \quad \mathbb{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\operatorname{det}\left(A^{-1}\right) \cdot \operatorname{det}(A)=\operatorname{det}\left(A^{-1} \cdot A\right)=\operatorname{det}(\mathbb{I})=1 \\
\uparrow \\
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
\end{gathered}
$$

Special Matrices

- Diagonal matrix

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]\right)=d_{1} \cdot d_{2} \cdot d_{3}
$$

Special Matrices

- Triangular matrix.

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{ccc}
d_{1} & a & b \\
0 & d_{2} & c \\
0 & 0 & d_{3}
\end{array}\right]\right)=d_{1} \cdot d_{2} \cdot d_{3} \\
& \operatorname{det}\left(\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
a & d_{2} & 0 \\
b & c & d_{3}
\end{array}\right]\right)=d_{1} \cdot d_{2} \cdot d_{3}
\end{aligned}
$$

The determinant and Gaussian Elimination

- Switch two rows - multiply the determinant by (-I)
- Multiply a row by 'c' - multiply the determinant by (c)
- Perform R2 --> a*RI + b*R2 - multiply the determinant by (b).

Collect Thoughts

Equivalent Statements

- $A^{*} x=b$ has a single unique solution for any 'b'.
- 'A' has an inverse.
- ' A ' is non-singular.
- ' A ' can be turned into II using Gaussian Elimination - ' A ' is row equivalent to \mathbb{I}
- $\operatorname{det}(\mathrm{A}) \neq 0$

Solution methods

- Gaussian Elimination
- Matrix - vector / inverse method.

Determinant

- Used to determine if a matrix has an inverse
- Alternatively, if a system has a solution.

Computing the Determinant

- For a 2×2 or 3×3, use method of diagonals.
- For an nxn, use expansion by minors on a row.
- Use expansion by minors on a column.
- Use row reduction to simplify first!
- Can be used to get a row or column of mostly zeros!

Determinant and System Solutions

- Not only can the determinant be used to see if a system has a solution.
- It can be directly used to compute the solution.
- Cramer's Rule

Methods of Solving a Linear System

- Gaussian Elimination
- Best if you need to solve a system only once.
- Matrix - vector method.
- Best if you need to solve a system many times.
- Cramer's Rule
- Best if you need only one component of a solution, say X_{5}.

